Characterizations of operator order for k strictly positive operators
نویسندگان
چکیده
منابع مشابه
CHARACTERIZATIONS OF OPERATOR ORDER FOR k STRICTLY POSITIVE OPERATORS
Let Ai (i = 1,2, · · · ,k) be bounded linear operators on a Hilbert space. This paper aims to show a characterization of operator order Ak Ak−1 · · · A2 A1 > 0 in terms of operator inequalities. Afterwards, an application of the characterization is given to operator equalities due to Douglas’s majorization and factorization theorem. Mathematics subject classification (2010): 47A63.
متن کاملCharacterizations of strictly singular operators on Banach lattices
New characterizations of strictly singular operators between Banach lattices are given. It is proved that, for Banach lattices X and Y such that X has finite cotype and Y satisfies a lower 2-estimate, an operator T : X → Y is strictly singular if and only if it is disjointly strictly singular and 2-singular. Moreover, if T is regular then the same equivalence holds provided that Y is just order...
متن کاملDomination by Positive Disjointly Strictly Singular Operators
We prove that each positive operator from a Banach lattice E to a Banach lattice F with a disjointly strictly singular majorant is itself disjointly strictly singular provided the norm on F is order continuous. We prove as well that if S : E → E is dominated by a disjointly strictly singular operator, then S2 is disjointly strictly singular.
متن کاملIntuitionistic Fixed Point Theories for Strictly Positive Operators
In this paper it is shown that the intuitionistic fixed point theory ÎD i α(strict) for α times iterated fixed points of strictly positive operator forms is conservative for negative arithmetic and Π2 sentences over the theory ACA−i α for α times iterated arithmetic comprehension without set parameters. This generalizes results previously due to Buchholz [5] and Arai [2].
متن کاملDesign of strictly positive real, fixed-order dynamic compensators
This paper presents sufficient conditions for the design of strictly positive real (SPR), fixed-order dynamic compensators. The primary motivation for designing SPR compensators is for application to positive real (PR) plants. When an SPR compensator is connected to a PR plant in a negative feedback configuration, the closed loop is guaranteed stable for arbitrary plant variations as long as th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Inequalities & Applications
سال: 2012
ISSN: 1331-4343
DOI: 10.7153/mia-15-84